A Runge-Kutta Method for the Numerical Solution of the Goursat Problem in Hyperbolic Partial Differential Equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two - Step Runge - Kutta Methods and Hyperbolic Partial Differential Equations

The purpose of this study is the design of efficient methods for the solution of an ordinary differential system of equations arising from the semidiscretization of a hyperbolic partial differential equation. Jameson recently introduced the use of one-step Runge-Kutta methods for the numerical solution of the Euler equations. Improvements in efficiency up to 80% may be achieved by using two-ste...

متن کامل

numerical solution of fuzzy differential equation by runge-kutta method

in this paper, the numerical algorithms for solving ‘fuzzy ordinary differential equations’ are considered. a scheme based on the 4th order runge-kutta method is discussed in detail and it is followed by a complete error analysis. the algorithm is illustrated by solving some linear and nonlinear fuzzy cauchy problems.

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

The development of Runge-Kutta methods for partial differential equations

A widely-used approach in the time integration of initial-value problems for time-dependent partial differential equations (PDEs) is the method of lines. This method transforms the PDE into a system of ordinary differential equations (ODEs) by discretization of the space variables and uses an ODE solver for the time integration. Since ODEs originating from spaee-discretized PDEs have a special ...

متن کامل

Numerical solution of hybrid fuzzy differential equations by runge-kutta method of order five and the dependency problem

In this paper, we study the numerical solution of hybrid fuzzy differential equations by using Runge-Kutta method of order five. This method is adopted to solve the dependency problem in fuzzy computation. Numerical examples are presented to illustrate the theory. 2010 AMS Classification: 03E72, 08A72

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Computer Journal

سال: 1966

ISSN: 0010-4620,1460-2067

DOI: 10.1093/comjnl/9.1.81